3x^2+2x+1=432

Simple and best practice solution for 3x^2+2x+1=432 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 3x^2+2x+1=432 equation:


Simplifying
3x2 + 2x + 1 = 432

Reorder the terms:
1 + 2x + 3x2 = 432

Solving
1 + 2x + 3x2 = 432

Solving for variable 'x'.

Reorder the terms:
1 + -432 + 2x + 3x2 = 432 + -432

Combine like terms: 1 + -432 = -431
-431 + 2x + 3x2 = 432 + -432

Combine like terms: 432 + -432 = 0
-431 + 2x + 3x2 = 0

Begin completing the square.  Divide all terms by
3 the coefficient of the squared term: 

Divide each side by '3'.
-143.6666667 + 0.6666666667x + x2 = 0

Move the constant term to the right:

Add '143.6666667' to each side of the equation.
-143.6666667 + 0.6666666667x + 143.6666667 + x2 = 0 + 143.6666667

Reorder the terms:
-143.6666667 + 143.6666667 + 0.6666666667x + x2 = 0 + 143.6666667

Combine like terms: -143.6666667 + 143.6666667 = 0.0000000
0.0000000 + 0.6666666667x + x2 = 0 + 143.6666667
0.6666666667x + x2 = 0 + 143.6666667

Combine like terms: 0 + 143.6666667 = 143.6666667
0.6666666667x + x2 = 143.6666667

The x term is 0.6666666667x.  Take half its coefficient (0.3333333334).
Square it (0.1111111112) and add it to both sides.

Add '0.1111111112' to each side of the equation.
0.6666666667x + 0.1111111112 + x2 = 143.6666667 + 0.1111111112

Reorder the terms:
0.1111111112 + 0.6666666667x + x2 = 143.6666667 + 0.1111111112

Combine like terms: 143.6666667 + 0.1111111112 = 143.7777778112
0.1111111112 + 0.6666666667x + x2 = 143.7777778112

Factor a perfect square on the left side:
(x + 0.3333333334)(x + 0.3333333334) = 143.7777778112

Calculate the square root of the right side: 11.990737167

Break this problem into two subproblems by setting 
(x + 0.3333333334) equal to 11.990737167 and -11.990737167.

Subproblem 1

x + 0.3333333334 = 11.990737167 Simplifying x + 0.3333333334 = 11.990737167 Reorder the terms: 0.3333333334 + x = 11.990737167 Solving 0.3333333334 + x = 11.990737167 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3333333334' to each side of the equation. 0.3333333334 + -0.3333333334 + x = 11.990737167 + -0.3333333334 Combine like terms: 0.3333333334 + -0.3333333334 = 0.0000000000 0.0000000000 + x = 11.990737167 + -0.3333333334 x = 11.990737167 + -0.3333333334 Combine like terms: 11.990737167 + -0.3333333334 = 11.6574038336 x = 11.6574038336 Simplifying x = 11.6574038336

Subproblem 2

x + 0.3333333334 = -11.990737167 Simplifying x + 0.3333333334 = -11.990737167 Reorder the terms: 0.3333333334 + x = -11.990737167 Solving 0.3333333334 + x = -11.990737167 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '-0.3333333334' to each side of the equation. 0.3333333334 + -0.3333333334 + x = -11.990737167 + -0.3333333334 Combine like terms: 0.3333333334 + -0.3333333334 = 0.0000000000 0.0000000000 + x = -11.990737167 + -0.3333333334 x = -11.990737167 + -0.3333333334 Combine like terms: -11.990737167 + -0.3333333334 = -12.3240705004 x = -12.3240705004 Simplifying x = -12.3240705004

Solution

The solution to the problem is based on the solutions from the subproblems. x = {11.6574038336, -12.3240705004}

See similar equations:

| 140=-20a | | 2.4(m-2)+3.8=-8.2 | | 3(4x+5)=6(2x-3)+7 | | h=-16t+16t+32 | | (x+3)(x+5)=63 | | x(3x+2)=432 | | 3(4x+5)=12x-18+7 | | 4r^2+18r=-16 | | log(x+5)=64 | | x+(x+7)=67 | | 7d+d-12=14+5 | | 12m^2=18 | | -9(3b+4)+28b-4=0 | | r-15=-26 | | 23x+37-45x=139 | | y=tane^5x | | -40+5x=5x-8(-2x-5) | | 4x-6y=-42 | | 3(4c-5)=9 | | 18-4q=4 | | .5-3=12 | | -3(5-4c)=3c+21 | | 4b^2+8b+7=.0 | | (-7x^4y)(-10x^6y^2)=70x^10y^3 | | -3x-21x+24=0 | | 3m+n-2m+4n+m=10 | | 8x+5=26x+5 | | x^2-12x=12 | | 4x+28y=-16 | | 8z+13=7z+5 | | 2x-4y=-34 | | 2(a+b)=c |

Equations solver categories